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to the development and use of stochastic screens for digital
imaging applications.For numerous digital imaging applications, there is a need

to maintain the highest quality perceived image, while utilizing
a printer or display that can only achieve a limited number of 1.1. Ordered Dither
output states. Digital halftoning is the approach that has been

The history of halftoning technology can be dated backwidely used to meet this demand. In this focus paper, we provide
to the last century when physical screens and gauzes werea short summary of halftone techniques, then we concentrate

on the newer and expanding roles of stochastic halftone used to generate halftone images. These techniques have
screensÐwhich are free of regular periodic structures and have been translated directly to digital halftoning. Some excel-
numerous advantages in quality color rendering. We address lent comprehensive reviews have been published, including
some theoretical issues, design and optimality issues, printer
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FIG. 3. Flowchart for standard error diffusion.

pending on the input image value. It forces average tone
content to remain the same and attempts to localize the
distribution of tone levels. Figure 3 shows the flowchart
for error diffusion. This approach was first presented by
Floyd and Steinberg back in the 1970’s [5]. Subsequently,
many modifications and derivations have been proposed
in the design of error filter [8], threshold value [9], feedback
loop [10], as well as processing sequence [11]. Although all

FIG. 1. Ordered dither halftoning technique. these algorithms require intensive computation and some
artifacts exist, the quality of the halftone image, particu-
larly the sharp edges and many image details, is generally
considered excellent [12]. The success of error diffusionscreening or frequency modulated (FM) screening, has

been the most active research field in digital halftoning in lies in the fact that it is a ‘‘good blue-noise generator,’’ as
pointed out by Ulichney [1]. In the academic literature,recent years. These terms have been loosely applied to

both algorithm approaches and the screen approach. Error the nature of noise is often described by a color name; i.e.,
white noise is so named because of its flat power spectrum.diffusion [5] is the algorithm approach that has been most

extensively studied, whereas the Blue Noise Mask (BNM) Blue noise, on the other hand, has most of its energy
located at high spatial frequencies with very little low-[6, 7] is the term first applied to a screen or threshold array

that produces unstructured, visually appealing halftone frequency component. A typical blue-noise radial average
power spectrum (RAPS) is shown in Fig. 4. Patterns withpatterns. In order to follow a precise definition from now

on, the term ‘‘stochastic screening’’ applies to a threshold blue-noise characteristics generally enjoy the benefits of
aperiodic uncorrelated dot patterns without low-fre-array. Also, ‘‘mask’’ and ‘‘screen’’ will be used interchange-

ably when both will refer to a threshold array. quency graininess.

1.2.2. Stochastic Screen1.2.1. Error Diffusion

Error diffusion is an adaptive algorithm that produces Stochastic screen halftoning is the subject of active re-
search. It combines the simplicity of ordered dither with thepatterns with different spatial frequency content de-

FIG. 2. Halftoned image from clustered-dot halftoning (left) and dispersed-dot halftoning (right).



STOCHASTIC SCREEN HALFTONING 425

sation and screens for multilevel-output devices. In Section
6, color halftoning is investigated, and different stochastic
color halftone schemes are presented, followed by an eval-
uation based on a human visual model. Finally in Section
7, a summary is given, and current problems with stochastic
screen halftoning are identified and future research is pro-
posed.

2. THE CONSTRUCTION OF A STOCHASTIC
SCREENÐBLUE NOISE MASK

FIG. 4. A blue-noise radial average power spectrum. In this section, the algorithm [6, 7, 13, 14] to generate
a Blue Noise Mask is presented. First, an initial blue-noise
binary pattern b[i, j, g] (two-dimensional binary pattern at
gray level g) for some intermediate level g (0 , g , 255,blue-noise quality of error diffusion (see Fig. 5). Stochastic

screen halftoning is a point comparison process, so it is assuming an 8-bit mask) is required. Using the filtering
and swapping technique presented in Section 3, such aeasy to implement. Thus, devices currently using ordered

dither technique may be switched to stochastic screen half- pattern with a blue-noise characteristics is obtained and
used as the initial pattern. From this initial pattern, antoning simply by replacing the original dither array with

a stochastic screen. The halftone image from a stochastic initial mask m[i, j] is generated, which when used to half-
tone the constant gray image of level g, produces the initialscreen will have the typical visually pleasing blue-noise

characteristics, which is guaranteed when screens are gen- binary pattern b[i, j, g].
Once level g is completed, level g 1 1 is processed (Fig.erated from blue-noise dot patterns of individual gray lev-

els. The Blue Noise Mask, proposed by Mitsa and Parker, 6). For this level, the blue-noise pattern is created by con-
verting the appropriate number (the total number of pixelswas the first stochastic screen to realize the above scheme

[6, 7, 13]. in the binary pattern divide by the total number of levels)
of 0’s to 1’s in the previous pattern g. At the same time,The following sections will concentrate on the design of

stochastic screens and their applications in black-and-white the mask m[i, j] is updated. This process is repeated until
the mask has been updated for all the levels above g tohalftoning, multitoning, and color halftoning. Our review

focuses on the scientific literature published in peer-re- level 255. Analogous procedures are used to construct the
mask for all the levels below g to level 0. The resultingviewed forums. The organization is the following: In Sec-

tion 2, the construction of the prototypical stochastic two-dimensional array m[i, j] will be the final Blue Noise
Mask (Fig. 7).screen, the Blue Noise Mask, is outlined. Section 3 details

the common filter approaches in screen construction, and There is a significant constraint on the converting and
swapping operation in this mask construction. In makingvarious filter design techniques are examined. In Section

4, the optimality of blue-noise binary pattern in terms of a mask, the binary patterns at different levels are depen-
dent. For example, in the upward construction process, allscreen design is pursued. In Section 5, various modifica-

tions of stochastic screens in order to meet special applica- the 1’s in the binary pattern for level g are contained in
the binary pattern g 1 1, so when converting and swappingtions are introduced, such as screens with dot-gain compen-

FIG. 5. Halftoned image from error diffusion (left) and Blue Noise Mask (right).
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where hhpg
(i, j) is a high pass filter designed for level g,

bg(i, j) is the binary pattern, and ‘‘**’’ denotes convolu-
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FIG. 12. Different filters in spatial domain. FIG. 14. Two filters in frequency domain. A small ‘‘dip’’ is seen
near frequency sample 110 in one curve.

the binary pattern will generally approximate the shape of
the highpass filter that is specified in Eq. (2) or (3) [14, 16, 1. Gaussian,
17]. Thus, a halftone designer considering the final RAPS
of the binary pattern can envision changes resulting from

F(u, v) 5 e2(u2
1v2)/2s2

; (5)different filter shapes by considering the filter as an initial
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respect to the original uniform gray pattern. The analysis of
the filtering technique put a lower bound on the achievable
perceived MSE, assuming that a filter based on the human
visual system is also used to measure the perceived MSE
between the gray and binary patterns. As Yao pointed
out, the difference between the local filtered output of the
largest white clump and the largest black clump must be
greater than a certain value T in order for the perceived
MSE to be further reduced. T is given by

T 5 1/4ls 2, (8)

where s is the standard deviation of a Gaussian filter based
on a human visual model.

FIG. 16. Spatial Frequency Response of the human visual model In another way of speaking, a nonzero lower limit on
by Sullivan et al. [10]. the perceived MSE will be reached when the filtering tech-

nique is employed.
To exceed this limit, a postfiltering algorithm [22] is

introduced below. By locally enforcing a vector processopic modulation transfer function as illustrated in Fig. 16,
after filtering, perceived MSE is further reduced and morethey were able to generate a locally unstructured ‘‘tileable’’
visually pleasing binary patterns are obtained. This newbinary pattern, 32 by 32 square, for each gray level, and
algorithm will be presented first. Then, a series of binarythey used a cost function with HVS weighting to guide a
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FIG. 17. Perceived MSE vs iteration in filtering and swapping process.

the threshold value (TH) can be related to the standard shows the difference between the largest white clump and
the largest black clump (DWB) for each iteration. Sincedeviation (SD) of the net force as
the initial pattern is a white-noise one, the DWB is quite

TH 5 V ´ SD. (9) large and the perceived MSE decreases in each iteration.
After a certain number of iterations, the DWB approachesV is a variable that is adaptive to the gray level as well as
the lower bound T set in Eq. (8) (in this case approximatelythe iteration number. As binary patterns are two-dimen-
0.0137), then the filtering process can no longer improvesional, the force calculation and pixel movement must be
the binary pattern (Fig. 19). Figure 20 shows the binarydone in the horizontal and vertical directions, respectively.
pattern (P2) obtained from the filtering process with per-

A different force-relaxation model for adaptive halfton- ceived MSE of 0.263.
ing of images was proposed by Eschbach and Hauk [23]. From this pattern (P2), the force algorithm is carried

out. The neighborhood W, which is used to calculate the4.2. A Progressive Series of Binary Patterns
net force on each pixel, is set as 13 by 13 and the starting

To illustrate the previous procedure, a white-noise pat- value of V is set as 1.5. Figure 20 shows the binary pat-
tern at level 245 is used as the initial pattern, then the tern (P3) after just five iterations with perceived MSE

of 0.165.transform-domain filtering is applied Fig. 17 shows the
perceived MSE drop versus iteration number and Fig. 18 It is quite obvious that by locally enforcing the vector

FIG. 18. Difference between the largest white clump and the largest black clump of filter output vs. iteration in the filtering and
swapping process.
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FIG. 21. RAPS of patterns P1, P2, P3, and P4.

from a ‘‘seed’’ pattern, the choice of ‘‘seed’’ pattern should
be based on its suitability for mask generation. In anotherFIG. 19. Electrostatic force model.
way of speaking, an optimal binary pattern should not
degrade the quality of its neighbor levels (g 1 1 and
g 2 1 and so forth for one level g).force process, the perceived MSE are further reduced and

Obviously, a white-noise pattern cannot be optimal.more uniform patterns are generated.
However, the highly structured pattern is not optimal ei-
ther. If this highly structured pattern is used as an initial4.3. Optimality Issue
pattern and neighboring levels are constructed, those

Without strict proof here, it is noted that the force algo- neighboring binary patterns are generally visually an-
rithm does converge after further iterations. Figure 20 noying due to noticeable disruption of the semi-regular
shows the final pattern (P4) obtained when the force algo- patterns established by the specific initial pattern. This
rithm converges after 75 iterations. The perceived MSE of leads to the question: What pattern between white noise
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FIG. 22. MSE vs gray level (partial) for Blue Noise Masks con-
structed from three ‘‘seed’’ patterns of different blue-noise RAPS
characteristics.

FIG. 24. Printer characteristic curve and lookup table curve for
compensation.tively. These plots are shown in Fig. 22. The plots for

pattern 0 and pattern 50 show very large discontinuities
around the initial level (245), which means that they are formed using lookup tables before halftoning. With
not optimal for mask construction. Therefore, the smooth- stochastic screen halftoning, dot-gain compensation can
ness of the perceived MSE transition could serve as a be actually included in the screen design process [24]. In
parameter to design an optimal binary pattern. general, these approaches can be classified into two catego-

ries. One is by printing fewer black dots than required in
5. SPECIAL APPLICATIONS ideal case, and the other is by printing black dots in a

preferred way while keeping the number of black dots forSo far, all the discussions have considered the design of
each level untouched.an ideal stochastic screen for an ideal device. However,

since real printers and displays are not ideal, a special 5.1.1. Printing Fewer Black Dots
screen can be designed to meet individual application re-

The nonlinearity of a specific printer can be directlyquirement. Although these requirements could be met with
accounted for in the construction of a mask. Gray patchesdifferent pre / post processing techniques, by incorporating
of certain levels are first printed to get the printer input-the device characteristics into screen design, both render-
output characteristics curve. Then, a corresponding curveing time and memory can be reduced.
to compensate for this nonlinearity is generated. This curve
will show how many dots are actually needed to correctly5.1. Dot-Gain Compensation
render a gray level. Thus, instead of converting a pre-set

In digital printing, one major concern is dot gain, which number pairs of 1’s and 0’s to move up / down one level, a
can be attributed to ink spread or dot overlap and usually variable number pair of dots are converted according to
is a combination of both (Fig. 23). With stochastic screens, the compensation curve. Figure 24 shows the printer char-
isolated and dispersed halftone dots are typically gener- acteristic curve, an ideal (linear) mask curve and a lookup
ated, and therefore dot-gain compensation will be neces- table curve for a printer.

Sometimes, if the printer characteristic curve is not avail-sary. In practice, dot-gain compensation usually is per-
able during mask design or if several masks have to be
designed, a mask with 12-bit depth can be built first instead
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number of black dots printed corresponds to a lighter level
than the desired one, but the desired level is achieved due
to ink spread or dot overlap. Another way to look at dot
gain is that it is related to the area-to-perimeter ratio of
printed dots. The area of paper covered by a dot is mea-
sured in pixels, while the perimeter is the total length of
travel around the outside of a printed dot. It is easy to see
that the smaller this ratio, the bigger the dot gain. For an
isolated dot, this ratio is 0.25 assuming each dot has a unit
diameter. In clustered-dot dither where the halftone dots
in a cell are connected, this ratio is bigger than 0.25, which
is the reason that clustered-dot dither generally shows less
dot gain. Thus, another approach to reduce dot gain is to
increase the area-to-perimeter ratio.

The nonsymmetric mask. Generally speaking, dot gain
can be severe for dark gray levels since black dots are the
majority. In the construction of a Blue Noise Mask, certain
white dots have to be replaced with black ones to go from
level g to level g-1. Normally, with a lowpass filter picking
up those white dot candidates (as specified in Section 2),
connected white dots are more likely to be selected than
isolated white ones. Therefore, as the total number of white
dots is decreasing, the number of isolated white dots is
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This concept of utilizing the finest possible patterns also
serves as a fundamental rule for designing schemes in using
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FIG. 29. A color patch halftoned with different schemes (from left to right, top to bottom: dot-on-dot, shift, invert, four-mask, and
error diffusion).

In light regions, this scheme results in the nonoverlapping 3. Three more binary patterns are made in the same
way by picking the location of pixels with values in thearrangement of color dots with high spatial frequency.

However, this scheme is only applicable for two color range 64–127, 128–191, and 192–255.
planes (typically cyan and magenta), and some other 4. This construction ensures that these binary patterns
scheme has to be used to determine other color planes. exhibit blue-noise characteristics. The filtering and swap-

ping technique can be further used to eliminate any resid-
6.3.4. The Four-Mask Scheme ual periodic structures.

This scheme is actually an extension of the inverted 5. These four binary patterns are used as initial patterns
technique. It is based on the same idea: increasing the to generate four masks.
spatial frequency of the printing dots and minimizing the

When these four masks are applied to different colorlow-frequency energy introduced by the overlapping of
planes, they generate color halftone dots that are maxi-
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FIG. 30. Flowchart for color halftone schemes evaluation.

DE 5 ˇ
2

(DL*) 2 1 (Da*)2 1 (Db*)2, (12) dot-on-dot scheme results in minimum chrominance error
but maximum luminance error and the four-mask scheme
results in minimum luminance error but maximum chromi-where DL*, Da*, Db* are corresponding differences be-
nance error, while the result from the shift scheme fallstween two colors. This color difference can be further bro-
in between.ken up into components of luminance error DL* and chro-

minance error DC*, which is given by
6.3.6. Adaptive Color Halftoning

DC* 5 ˇ
2

(Da*)2 1 (Db*)2. (13) Beyond the previous methods, one solution to reduce
perceived colorimetric error is to apply two mutually exclu-
sive masks on two color planes first and then to apply anOur analysis [29] shows that different perceived errors are

produced by different mask techniques. In general, the adaptive scheme on other planes. Another advantage of

FIG. 31. Flowchart of adaptive color halftone scheme.
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FIG. 32. Details of adaptive decision step.

this adaptive scheme is that color reproduction could be Assuming the viewing distance at 10 inches and printer
resolution at 300 dpi, the perceived MSE between thetaken into account [30]. Figures 31 and 32 show the flow-



STOCHASTIC SCREEN HALFTONING 439

binary patterns,’’ in Proceedings, NIP12: International Conference onREFERENCES
Digital Printing Technologies [33, pp. 66–69].

1. R. Ulichney, Digital Halftoning , MIT Press, Cambridge, MA, 1987. 23. R. Eschbach and R. Hauck, ‘‘A 2-D pulse density modulation by
iteration for halftoning,’’ Optics Communications62, 1987, 300–304.2. P. G. Roetling and R. P. Loce, Digital halftoning, in Digital Image

Processing Methods(E. R. Dougherty, Ed.), Chap. 10, pp. 363–413, 24. M. Yao and K. J. Parker, Dot gain compensation in the blue noise
Dekker, New York, 1994. mask, in Rogowitz and Allebach [31, pp. 221–227].

3. P. R. Jones, Evolution of halftoning technology in the United States 25. K. Spaulding and L. A. Ray, Method and apparatus for generating
patent literature, J. Electron. Imaging 3,



440 YU AND PARKER

received in 1978 and 1981. From 1981 to 1985 he was an assistant professor
of electrical engineering and radiology. Dr. Parker has received awards
from the National Institute of General Medical Sciences (1979), the Lilly
Teaching Endowment (1982), the IBM Supercomputing Competition
(1989), the World Federation of Ultrasound in Medicine and Biology
(1991). He is a member of the IEEE Sonics and Ultrasonics Symposium
Technical Committee and serves as reviewer and consultant for a number
of journals and institutions. He is also a member of the IEEE, the Acousti-
cal Society of America, and the American Institute of Ultrasound in


